
Tools and Experiments Supporting a Testing-based

Theory of Component Composition

DICK HAMLET

Portland State University

PRE-PUBLICATION COPY — Please do not cite or quote

Development of software using off-the-shelf components seems to offer a chance for improving prod-
uct quality and developer productivity. This paper reviews a foundational testing-based theory
of component composition, describes tools that implement the theory, and presents experiments
with functional and non-functional component/system properties that validate the theory and
illuminate issues in component composition.

The context for this work is an ideal form of component-based software development (CBSD)
supported by tools. Component developers describe their components by measuring approxima-
tions to functional and non-functional behavior on a finite collection of subdomains. Systems
designers describe an application-system structure by the component connections that form it.
From measured component descriptions and a system structure, a CAD tool synthesizes the sys-
tem properties, predicting how the system will behave. The system is not built, nor are any
test executions performed. Neither the component sources nor executables are needed by systems
designers. From CAD calculations a designer can learn (approximately) anything that could be
learned by testing an actual system implementation. The CAD tool is often more efficient than
it would be to assemble and execute an actual system.

Using tools that support an ideal separation between component- and system development,
experiments were conducted to investigate two related questions: (1) To what extent can unit (that
is, component) testing replace system testing? (2) What properties of software and subdomains
influence the quality of subdomain testing?

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and debugging

General Terms: Verification
Additional Key Words and Phrases: Experiments with composition of software components, syn-
thesis of system properties, component-based software development (CBSD), CAD tool support
for CBSD

1. INTRODUCTION

Component-based software development (CBSD) using off-the-shelf components
is one approach to the problem of overwhelming complexity of modern software.

Author’s address: Dick Hamlet, Department of Computer Science, Portland State University, P.O.

Box 751, Portland, OR 97207, USA.
Supported by NSF ITR grant CCR-0112654 and by an E.T.S. Walton fellowship from Science
Foundation Ireland. Neither institution is in any way responsible for statements made in this
paper.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–40.

2 · Dick Hamlet

Other engineering disciplines have been remarkably successful in defining and stan-
dardizing components from which large systems are designed and built. It is char-
acteristic of successful component-based development that components are selected
from a catalogue and the catalogue descriptions alone are required for systems
design and evaluation. Systems design is done on paper, not by experimental con-
struction. An important benefit of this ideal approach is that software can do part
of the design work. So-called CAD (computer-aided design) tools help the system
designer combine component catalogue descriptions into a system description.

The software version of component-based design is only in its infancy. There is
disagreement about what constitutes a component, about the form of a catalogue
description, and about the necessary or allowed forms of combination. The ideas
and supporting tools available today are thought by some to be useful and impor-
tant, but none comes close to the state of the art in (say) mechanical engineering
CAD.

This paper describes tools and experiments the tools support, exploring a par-
ticularly simple and ideal theory of components and their combination based on
testing. A component is taken to be an executable program. Its catalogue de-
scription is obtained by test measurements over a collection of input subdomains.
The resulting description is an approximation to the component’s functional and
non-functional behaviors. Using the system-building constructs of sequence, condi-
tional, and iteration, systems are designed from components. A CAD tool predicts
system functional and non-functional behavior from the system structure and the
component catalogue descriptions that comprise it. Only the component catalogue
descriptions are required: the system designer needs no access to component code,
not even binary executables.

By imposing restrictions on the components themselves, the theory allows a com-
plete realization of ideal CBSD and the implementation of tools supporting exper-
iments that expose issues and problems in its use. The restrictions are:

—Component input and output are single floating-point value domains.

—Components may have local persistent state, but only from a single floating-point
value domain.

—There is no concurrency.

These are severe restrictions, but they are consistent with the bulk of existing test-
ing theory that began with the work of Goodenough and Gerhart [Goodenough and
Gerhart 1975]. They allow an ideal separation between component development and
system design, and if they are observed, powerful tools can be implemented to sup-
port CBSD. Without the restrictions, it is problematic what tools can accomplish.
For example, detailed practical models like UML are supported only by syntax-
checking and bookkeeping tools; nothing remotely like the automatic synthesis of
our CAD tools is imaginable.

In what follows we speak as if our theory and supporting tools were being used
by practicing software developers, but this is only a presentation device. Before
these ideas can be used in practice, many difficult technical problems would have
to be solved. In the restricted setting described in this paper, our purpose is to gain
understanding of the way in which components might be used ideally, the problems

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 3

that arise, the way in which tools can help solve those problems, and limitations of
tool support.

The remainder of this paper is organized as follows: Section 2 is a brief sum-
mary of theoretical background. Section 3 describes implementation of supporting
tools with expository examples of their use. Section 4 describes experiments ex-
ploring and validating the theory. Section 5 collects some applications of the theory
supported by the tools. Section 6 describes planned extensions of this project.

2. THEORETICAL UNDERPINNINGS

A major deficiency of software-testing theory is that it is not “compositional.” Inde-
pendent test results from software elements C1 and C2 cannot be directly combined
because interacting test outputs and inputs do not match. For example, if C1 has
been tested on input X with output Y and C1 and C2 are placed in sequence, it
is unlikely that C2 will have been tested on input Y , so the composite output on
input X cannot be predicted.

Subdomain testing [Howden 1976] provides an approximation that solves the
problem of mismatched output/input; our theory of software component composi-
tion is based on subdomains.

2.1 Stateless Components

Because the behavior of programs that retain state is potentially much more com-
plicated than without state, stateless theory is given first. It exhibits many char-
acteristics of the more general case.

Consider again C1 and C2 in sequence, but now with independent subdomain
test data. There is a decomposition of each input space into a finite disjoint set
of subdomains, and corresponding subdomain-output values obtained by testing.
If subdomains are relatively homogeneous, a single output value approximates the
behavior on each subdomain. Given any input X , it falls in some C1 subdomain.
Suppose inputs in that subdomain have average output Y . Y falls in some C2

subdomain where the average output is Z. Then Z approximates the output of
the sequence C1; C2 on input X and thus independent component test results can

be combined to get (approximate) system results. The calculation is not accurate
unless the subdomains are perfectly homogeneous so that all outputs in each sub-
domain are the same (and hence equal to the average there). But one might expect
that by shrinking the subdomain size the accuracy will improve.

For numerical input domains, there is a more accurate approximation to the
component behavior. By fitting a straight line to test data within a subdomain,
output variations over the subdomain are captured. Consider again C1; C2 where
the behavior on each of their subdomains has a linear approximation. Given input
X , it falls in some C1 subdomain on which the line is (say) λx(mx + b). Then
the approximate output is Y = mX + b. Y falls in some C2 subdomain with line
λx(m′x + b′). Then the composite output is Z = m′Y + b′ = m′(mX + b) + b′ =
mm′X + m′b + b′. It is important that the composite result is also a line (of slope
mm′ and intercept m′b + b′). The linear approximation is the highest order with
this closure property.

The subdomain approximation with constant output on each subdomain will
be called the step-function approximation; the one with linear behavior will be

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Dick Hamlet

called the piecewise-linear approximation. Subdomain test results for any program
(component or system) consist of:

(1) A finite list of disjoint subdomains whose union is the program input domain;

(2) An output value for each subdomain. For the piecewise-linear approximation
this value is a (slope, intercept) pair for the line.

Subdomain test results are thus an acceptable form for a component ‘catalogue
entry’ as described in Section 1. It can be measured for a given component, and as
we see next, it can be calculated for systems.

The heart of a testing theory of component composition based on subdomains
is that from independent subdomain tests of two components, the results of a
subdomain test of those components in sequence can be calculated, without ever
forming the series system or testing it. There is an algorithm for calculating an
approximate “equivalent component” for a sequence.

Algorithm B (stateless functional sequence composition, step-function approxi-
mation).

Input: Subdomain test results for each of two components C1 and C2.

Output: Subdomain results for the series system U = C1; C2.

Algorithm: The subdomains of U are exactly those of C1. Let S be an arbitrary
subdomain of U , and Y the C1 output there (from the C1 test results since the
subdomains of U are those of C1). If Y falls in some C2 subdomain with output
Z (from the C2 test results), then the output of U on S is Z; otherwise, U ’s
output for S is undefined.

A similar construction for the piecewise-linear approximation is somewhat more
complicated, because the subdomains for U may be fragments of those of C1. De-
tails are given in [Hamlet 2007b].

“Glue code” is a name given to fragments (often of a surrounding control pro-
gram) needed to adjust the interfaces of components that do not quite fit together.
In the restricted context of this paper, there is no surrounding program, yet some-
thing like glue code is often needed, for example to scale an output range to match
a following input domain. It is always possible to insert a series component to make
the match.

To synthesize an equivalent component1 for:

if T then B else C fi,

intersect the subdomains on which T is true with those of B, and on these copy the
values from B’s test results; intersect the false subdomains of T with those of C,
and here copy C’s test results. The intersections create refined system subdomains.
If there is no else, for C use an identity component with zero run time, which can
be perfectly captured in the piecewise-linear approximation.

It is something of a surprise that one can algorithmically find an equivalent
component for a loop from its component descriptions. The approximate nature

1In the conditional and the loop to follow, the usual flowchart convention is that the input to T
is also provided to the following component(s). T ’s output is used only to select the path.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 5

of the subdomain test data enters essentially in the construction of an equivalent
iterated component. If the loop is:

while T do B od,

it can be unrolled any finite number of times:

if T then B fi; if T then B fi;...; while T do B od.

In the step-function approximation, suppose that the equivalent component for
if T then B fi has K subdomains. Then in at most K unrollings of the loop
the iteration will either be seen to be non-terminating or the composite subdomain
values will be obtained. Intuitively, each unrolling may remove one or more subdo-
mains from consideration (because T goes false on them), in which case the synthe-
sis algorithm requires composing in series at most K copies of if T then B fi with
no residual loop. Or, no subdomains are removed on some unrolling, which signals
non-termination. The equivalence of a loop with its unrolling applies only to output,
not to run time. A modification to the equivalent component for if T then B fi

is required in the repeated series composition to avoid repeating T ’s run time incor-
rectly. (For the piecewise-linear approximation the bound on number of unrollings
is more complicated.)

Non-functional properties of components are sometimes compositional in the
same way. In this paper we mostly use run time as the example. Thus add to
Algorithm B:

On C1 subdomain S let the step-function approximate run time of C1 be R1. For
the subdomain of C2 in which C1’s S output falls, let the approximate run time
of C2 be R2. Then the approximate run time of series system U on S is R1 +R2.

The three system-building constructs of sequence, conditional, and iteration are
sufficient to construct an arbitrary software system [Boehm and Jacopini 1966].
Straightforward algorithms like Algorithm B construct, in both the step-function
and piecewise-linear approximations, an equivalent component for sequence, condi-
tional, and iteration constructs. Details are given in [Hamlet 2007b].

2.2 Components with Persistent Local State

In the ideal CBSD paradigm state must be encapsulated within components; if there
were a global state, some extra, ‘system-level’ code would be required to manipulate
it. Each component is allowed a single persistent floating-point state value, kept in
a permanent disk file with a unique name. A step-function approximate description
of a component involves two orthogonal sets of subdomains, one for input, the other
for state. The description itself (catalogue entry) comprises three two-dimensional
tables of values: as in the stateless case, one for output and one for run time, and
an additional table for output states. Thus the graphs of a catalogue-description
approximation, instead of being step functions over the input, are three step-plateau
functions, rectangular flat steps above the rectangular subdomains in the input–
state plane. To measure the average values of these plateau functions requires
only sampling in each (input×state) subdomain. Systematic sampling is not really
correct; sampling will be discussed in Section 3.1 to follow. For the moment, imagine
that step-plateau descriptions are available for a collection of components.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Dick Hamlet

The basic algorithm for calculating from two such descriptions a description of
their series system is a straightforward adaptation of Algorithm B. The composite
system state is a cross product of local states.

Algorithm B′ (functional sequence composition with state).

Input: Subdomain test results (three step-plateau functions) for each of two
components Ca and Cb.

Output: Subdomain step-plateau functions for the series system U = Ca; Cb.

Algorithm: Let Ca have a typical input subdomain Ja and typical state subdo-
main Ha, while Cb has typical state subdomain Hb. The input subdomains of U

are the same as those of Ca, while U ’s state subdomains are like Ha×Hb. Thus a
typical subdomain of U is S = Ja×Ha×Hb. Let Y be the Ca output on Ja×Ha

(from the output step-plateau function of its test data). If Y falls in some Cb

input subdomain Jb, and the Cb output for Jb ×Hb is Z (from the Cb test data),
then the output of U on S is Z; otherwise, U ’s output for S is undefined.

Similarly, the run-time and result-state values for S are obtained from the other
two step-plateau functions of the components.

In the stateless case, Algorithm B yields tables for the system that have exactly
the same form as its input tables. Algorithm B′ is not as tidy: its subdomains are
like Ja × Ha × Hb, one dimension higher than the input tables. Its output states
are not the single-value ranges of input states, but pairs. If one of the two series
components is stateless, the system state is identical to that of the other component
and the dimension increase does not occur.

The adaptation of the stateless algorithms for calculating an equivalent compo-
nent for the conditional and iteration constructions are also straightforward, but
there are a number of complications. In a conditional, the result has a potential
for a triple cross-product state, one dimension from each of the three components
involved. In the loop the state of the body component does not multiply (although
the result may have a two-dimensional state if both the guard and the body have
state), but unrolling is less useful, since it applies only to output, not to either run
time or state.

2.3 Proving the Theory

Algorithm B′ and the others for calculating the results of combining catalogue de-
scriptions for components are almost entirely a matter of complicated bookkeeping,
pulling values from the component subdomains and combining them to populate
the system subdomains. It is usual in mathematics to argue for the correctness of
such algorithms as “obvious,” or “by construction.” What this means is that once
the underlying ideas are understood, anyone would agree that the algorithms can
be made to work. There may very well be blunders in the bookkeeping, but if a
mistake comes to light, it will be evident how to adjust the construction to fix it.
Sometimes a more formal proof is given for such algorithms, usually by induction
on the size of the instance (here perhaps the number of subdomains and the number
of system constructs). But everyone agrees that such proofs are “uninformative,”
that is, they are useless in understanding the algorithms.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 7

In the present case, these algorithms are the basis of CAD tools that implement
synthesis of arbitrary systems. Since the algorithms are straightforward, so is the
coding of these tools, but blunders are even more likely. Algorithm B′, for example,
involves more than ten pages of Perl code. Fortunately, there is an unusual way to
validate the tools, described in Section 3.3.

3. TOOL SUPPORT

Research-prototype tools were implemented in Perl to:

(1) Test and approximately describe components using subdomain testing (that is,
to create catalogue entries for components), and

(2) Make the theoretical calculations described in Section 2 to synthesize proper-
ties of a system built from components (that is, to calculate an approximate
equivalent component for a system).

The second set of algorithms is the core of a system-design CAD tool.
A number of support tools were also written to analyze and display the results of

measurement and synthesis. Altogether the tools comprise about 7000 lines of non-
comment Perl code, but there is some overlap between the stateless and with-state
versions. The CAD tool that handles both cases is about 1800 lines.

3.1 Component-testing Catalogue-entry Tools

A component developer has executable code, and must make measurements to
create a catalogue entry, that is, a list of subdomains and an approximation to
functional-, run-time, and result-state values on each subdomain. Our component-
testing tools use a configuration file containing the subdomain list, sampling fre-
quency, and name of the component executable file. From this information a cat-
alogue entry is created by attaching to each subdomain a triple of values (output,
run time, state). In the step-function approximation, values are averages obtained
by sampling over the subdomain. The component-testing tool produces a plot of
the approximation obtained by sampling compared to the measured component
behaviors, with the measured relative root-mean-square error for each subdomain.

3.1.1 Stateless Catalogue Descriptions. Figure 1 shows the step-function ap-
proximation to a stateless artificial component C0 constructed to illustrate the
tools. The horizontal axis in Fig. 1 is marked with the subdomain boundaries
(light tics crossing the axis), chosen by subdividing an input domain of [0,10) into
25 intervals, smaller where the function changes more rapidly. To obtain the aver-
age values each subdomain was sampled three times. The approximation is perfect
only for functional values on the interval [4, 5) where the component’s actual out-
put is constant. The weighted average r-m-s error is 2.8% for the output and 2.5%
for the run time.

For the stateless case2 the tools also implement a more accurate approximation
by fitting a line to the measurements in each subdomain. For C0 this piecewise-
linear approximation is perfect, because the component behaviors are linear. With

2It was decided not to implement piecewise-linear approximation for components with state; the
rationale is given in Section 6.1.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Dick Hamlet

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10F
un

ct
io

na
l (

up
pe

r)
 a

nd
 r

un
-t

im
e

(lo
w

er
)

va
lu

es

Input showing subdomain boundaries

Fig. 1. Approximated behavior (solid line, for the step-function approximation) of a stateless
component C0 and its actual behavior (dotted line)

this better approximation, the tool output shows measured and predicted curves
for C0 that coincide, and zero r-m-s error in every subdomain.

3.1.2 Catalogue Descriptions for Components with State. As an illustrative com-
ponent with state, choose Cm that uses its state to define four ‘modes.’ Figure 2
displays the output step-plateau graph3 for Cm. Inputs in [0,1) are used to set
the mode (state) value; this behavior comprises mode 0. In the other modes the
component has one of: (mode 1) linearly increasing output; (mode 2) behavior
similar to C0 of Section 3.1.1; (mode 3) parabolic output. Defining and storing
modes that subsequently influence behavior is a very common use of local state,
used notably by interactive applications whose users set ‘preferences’ (the modes).
The input domain for Cm was chosen to be [0,10) and the state domain [0,5). There
were 20 input subdomains and 10 state subdomains. Each of the 200 cross-product
subdomains was systematically sampled nine times.

The systematic sampling used to obtain Fig. 2 is natural, and corresponds to
the way states are often sampled in testing practice. However, systematic state
sampling is wrong in principle. Unlike input, state is not an independent dimension
under the control of the tester. What really happens is that a component initializes
its local state value, then subsequent inputs drive it from state value to state value
completely under program control. Each such sequence of inputs starting from
state initialization is repeatable, but within a sequence a repeated input may lead
to different results because of the changing state. Therefore, only certain states
are possible. Systematic sampling may produce phony results, by setting an “input
state” that never actually occurs. By changing the sampling to sequences of random
inputs, we can see what Cm really does (Fig. 3). The four modes are clearly visible
in Fig. 3, and other states between and beyond them are seen to be infeasible.
Infeasible states do not appear in executions, so neither do they appear in measured

3For this example run time is omitted from the discussion.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 9

 0

 2

 4

 6

 8

 10

Input domain

 0
 1

 2
 3

 4
 5

State domain

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

Functional output

Fig. 2. Approximate functional behavior (rectangles) of component Cm and its actual behavior
(crosses) sampled systematically

 0

 2

 4

 6

 8

 10

Input domain

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

State domain

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

Functional output

Fig. 3. Approximate functional behavior (rectangles) of component Cm and its actual behavior
(crosses) sampled with input sequences. Compare Fig. 2 in (say) subdomain [9,9.5)×[.5,1)

approximations. Figure 3 was obtained by testing Cs with 30 sequences of uniform
random inputs, sequence lengths uniformly distributed in [0,30]. In these sequences

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Dick Hamlet

there were a total of 474 input values. The weighted r-m-s error in Fig. 3 is 2.3%.
A component with local state has result-state behavior as well as output: when

in a given state, an input drives it to a new state. Figure 4 shows result-state
behavior for Cm, sampled correctly with the same random input sequences used for

 0

 2

 4

 6

 8

 10

Input domain

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

State domain

 0

 0.5

 1

 1.5

 2

 2.5

 3

Result state

Fig. 4. Approximate result-state behavior (rectangles) of component Cm and its actual state
behavior (crosses) sampled with input sequences

Fig. 3. In this case the r-m-s state error is 0.3%.
The difference between testing with systematic state sampling and the correct

input-sequence sampling need be no worse than in the Cm example. Systematic
sampling gets the right answer for feasible states but may include infeasible states.
However, one style of coding can lead to completely erroneous output and run-time
behavior for systematic state samples. If a component processes a state “reset”
condition by taking no action except to create a base state with a throw-away
output like a ‘Done’ message, systematic state sampling can show output ‘Done’
and its run time as the only possibilities. The code intends that behavior occurs
in a sequence of executions, the first to create state and subsequent ones to use
that new state; but none of these subsequent executions occurs in systematic state
sampling. Unless care is taken, each of the systematic samples appears to be the
“reset.”

3.1.3 Summary of Component-description Tools. A component developer can
use these tools to examine the behaviors of a component being implemented. The
developer is working from a specification, which serves as a test oracle for the
code, usually applied by hand. The measured data of graphs like Fig. 1 can
be compared to the oracle to verify that the implementation has not failed. Other
verification methods will probably be applied as well. For example, it is common to

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 11

define a collection of specification-based functional subdomains for testing, or to use
uniform-distribution random testing, or informal proving techniques. These other
verification techniques are unrelated to our tools. In particular, the subdomains we
use are not likely to be ones that come from specification-based tests.

Once the developer is confident that the component code is behaving correctly,
our tools create a catalogue description, which is their primary purpose. It is tempt-
ing to call that description the component “specification,” following standard usage
in the world of mechanical and electrical components. But in this paper we avoid
“specification” with any meaning other than an a priori list of requirements that
should have been implemented. The catalogue description is an approximation to
the implemented component’s actual behavior. That may be the desired behavior,
but not necessarily, unless the developer was both careful and lucky in verification.

The catalogue entry itself is a table defining (for example) the step-function
shown in Fig. 1 or the step-plateau functions of Figs. 3 and 4. The description can
be ‘executed’ by table look-up as described in Section 3.3; such an ‘execution’ of an
approximation would reproduce the step/plateau functions shown in the figures.

3.2 System-design (CAD) Tools

A systems designer designing a component-based system works from a components
catalogue and tentative ideas about how these components should be combined.
To explore this process, we have implemented a CAD tool that takes as input a
collection of component approximate descriptions (that is, catalogue-entry tables
produced by the specification tools of Section 3.1) and a description of the sys-
tem into which they are to be combined. Its output is a system prediction in
the same form as the component descriptions; that is, an ‘equivalent component
approximation’ for the system. The system form to be used is given to the tool
as a reverse-Polish string of sequence, conditional, and iteration operators whose
operands are components. The CAD tool uses the algorithms of Section 2 to syn-
thesize each construct as a subsystem in the form of an equivalent component, then
combines these in turn, ultimately synthesizing the complete system as a single
table that can be executed by table lookup.

A support tool produces a plot of the predicted behavior. The predictions can
be compared with values obtained by running a system formed by linking together
the actual component code in the given structure.

To illustrate the CAD tool, consider the simple system structure shown in Fig.
5, which was chosen to illustrate all three constructs. Fig. 5 also shows the reverse-
Polish description with operators S eries, C onditional, and L oop, and the succes-
sive synthesis steps to produce equivalent components, culminating in E4 for the
system.

3.2.1 An Example using Stateless Components. To keep the exposition as simple
as possible at first, only two stateless components are placed in the six boxes labeled
C1 – C6 in Fig. 5. An input domain of [0, 10) is arbitrarily chosen for the example.
The conditional-test components C2 and C4 are written as the same component
T that returns true only in the interval [2,6), with a constant run time of 0.2.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Dick Hamlet

C1

C2

C3C4

C6 C5

Synthesize C1 C2 C3 LSC4 C5 C6 CS

C2 C3 L→E1 C1 E1 SC4 C5 C6 CS

C1 E1 S→E2 E2 C4 C5 C6 CS

C4 C5 C6 C→E3 E2 E3 S

E2 E3 S→E4 E4

Fig. 5. A simple system structure and its synthesis steps

Components C1, C3, C5, and C6 are copies4 of C0, whose behavior is shown in Fig.
1. The step-function approximation is used. First the equivalent component E1 is
synthesized for the loop of C2 and C3. Three unrollings are required for termination
in 67 subdomains. Next the series combination of C1 with E1 is synthesized to E2.
The conditional equivalent component E3 is synthesized from C4, C5, and C6.
Finally, E2 in series with E3 produces a system equivalent component E4.

Figure 6 shows the resulting predictions with the actual system behavior sys-
tematically sampled 300 times for comparison. The first thing to notice about the
actual system behavior is that even for this simple expository example it is com-
plicated. There are four discontinuities that result from the conditionals, but their
locations are not intuitively obvious. (The approximation fails to predict the sec-
ond discontinuity.) The approximation errors are largest in subdomains [0.25, 0.50)
(second from left in Fig. 6) and [8.75, 9.38) (second from right), where system dis-
continuities do not fall on a subdomain boundary. The weighted average r-m-s
error is 4.9% for output and 3.3% for run time. A detailed investigation of system
predictions for stateless systems, exploring the way in which the accuracy depends

4Replication of a single component in a system may reuse its unique catalogue entry; the synthesis
algorithms make no use of any names in the component code. In executing the actual system for
validation, it is also OK to reuse the single copy of a component’s code, but only in the stateless
case. When there is state, it is implemented with a named file, and that name must be changed
in replications of a component.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 13

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10F
un

ct
io

na
l (

up
pe

r)
 a

nd
 r

un
-t

im
e

(lo
w

er
)

va
lu

es

Input showing subdomain boundaries

Fig. 6. Predicted (solid line) and actual (dotted line) behaviors for a simple system

on the accuracy of component approximations, is presented in Section 4.1.

3.2.2 An Example using Components with State. It is more difficult to give an
expository example of system synthesis using components with state, because of the
way in which system state grows dimensionally. Unless a system has all stateless
components but one, its behaviors will depend on more than two dimensions so they
cannot be easily graphed for visualization. We therefore choose for illustration the
simple system of Fig. 5 containing just one component with state: all the non-
conditional components are C0 except C1 is taken to be Cm from Section 3.1.2.
Figure 7 displays the results of the CAD calculation predicting system functional
behavior. The four modes of Cm are visible, and mode 2 (third from left, second
from right in Fig. 7) reproduces the behavior of the stateless system of Fig. 6,
because Cm in mode 2 acts like C0. The measurements (plotted crosses) in Fig. 7
were obtained with 50 random sequences of inputs containing 1212 points, as for
Cm in Fig. 3. The weighted average r-m-s error is 5.4%. Since only C1 has state,
the system state is a copy of it, and the system state prediction graph is the same as
Fig. 4. Further discussion of system-synthesis accuracy with state will be deferred
to Section 4.2.

3.3 ‘Executing’ Component Catalogue Entries

Component catalogue entries themselves can be ‘executed’ by table lookup. That
is, to obtain the approximate behaviors of a component for input x and state s, look
up (x, s) in the subdomains of its catalogue description and return the functional-
output, run-time, and result-state values stored there for the subdomain containing
(x, s). In the step-function approximation the values returned are constant for all
(x, s) in the same subdomain. The ‘equivalent components’ synthesized by the
CAD tools are in the same form, and they can be similarly ‘executed.’ This is the
sense in which a calculated system is available to its designer ‘on paper.’ Anything
that could be learned from executing the actual assembled system can be learned
(approximately) by table lookup in the calculated equivalent component for the

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Dick Hamlet

 0

 2

 4

 6

 8

 10

Input domain

 0 0.5 1 1.5 2 2.5 3 3.5

State domain

 1

 2

 3

 4

 5

 6

 7

 8

 9

Functional output

Fig. 7. Predicted (rectangles) and actual (crosses) output for a simple system

system.
It is sometimes difficult to conceptualize execution using a description that does

not execute its parts. The computed equivalent components are static, and do not
go through the motions that one intuitively expects. For example, the equivalent
for a conditional does not, when executed, test its condition. A loop equivalent
does not in any sense iterate. If the theory involved were a formalism like Floyd-
Hoare logic [Floyd 1967] or Mills functional calculus [Mills et al. 1987], there would
seem nothing strange about composing descriptions to get a new description. But
because ours is a testing theory, one falls into the idea of execution when there is
none. However, there is an intermediate way to look at the theory which helps to
bridge the intuitive gap. Given the system structure, executable catalogue entries
can be treated as code by surrounding each with a table-lookup wrapper. Then an
approximate system can be assembled by linking these wrapped tables together in
the given structure. Such a system, when executed, has exactly the same behavior5

as the CAD-calculated system equivalent, but it does go through the expected
operations: the conditional components do test inputs (by table-lookup), the loops
do iterate (the table lookups), and so on.

This intermediate system formed from the approximate component catalogue de-
scriptions has two very useful applications: First, it serves as an oracle for checking
the correctness of the CAD tools. If CAD validation tests such as described in
Section 3.2 are run not against the real system code, but against the table-lookup
version, they should show zero errors everywhere. The correctness of the lookup

5There is an exception in the case of a conditional involving more than one component with state,
described in Section 4.2.1 and in Section 6.1.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 15

system depends only on proper measurement of each component description and
proper linking for each of the system constructs. Those implementations are simple
and can be seen to be correct early on. They are then used in every case study
to certify that the CAD calculations (by no means simple or obviously correct) are
right. Second, when it is difficult to derive information that intuitively depends
on execution from the CAD approximation, the table-lookup system can be used
instead. For example, the trace facility mentioned in Section 5.2 below was imple-
mented only for executions. But traces for CAD approximations can be obtained
with the same tool, by using the table-lookup components.

Section 3.5 discusses the performance of the tools, comparing the times required
to execute a real system, to execute a system by table lookup in each of its compo-
nent catalogue entries, to make the CAD calculation, and to execute the calculated
system equivalent.

3.4 Artificial Components Constructed to Order

The components employed in the expository examples of this paper are artificial.
We began with ‘real’ components, but found that they were not good at stressing the
theory and tools or for gaining insights about the CBSD process. What appeared
at first an expedient turned out to be a cornerstone of this study.

Initially, we tried to create or find ‘real’ components whose behaviors would make
good case studies. We first used a vending-machine specification that is a standard
object-oriented programming exercise. The components of the machine select a
product to vend, accept money deposited, make change, and so on. A Java imple-
mentation was compared to the reliability application of the theory with excellent
results: The predictions were perfect. However, closer examination showed that this
was a trivial consequence of the simplicity of the example: the component behaviors
were constant on obvious subdomains so the example was no real test of the theory.
Next, we crafted a Java component that calculated by brute-force trial the spac-
ing between the first two primes larger than its input, and studied this component
in series constructions. The theory run-time predictions were wildly inaccurate,
which we traced to measurement errors when the Java run-time environment did
an unexpected garbage collection; we also had difficulty with repeatability of the
measurements on UNIX systems where the accuracy of the timing primitives is
limited to one scheduling tick. When these problems were sorted out, the results
were again excellent [Hamlet et al. 2003], but detailed study of the example showed
that despite its complications it was a trivial application of the theory.

Because the prime-spacing example was long-running, we hit upon the idea of
constructing ‘phony’ components to order. Any executable program can be sur-
rounded by a wrapper that measures properties of its execution. In particular, we
had been obtaining process run time by an operating-system call in the wrapper,
sending the run-time value to stderr. In retrospect it is an obvious insight to
realize that waiting for actual execution is not necessary. If a phony component
is created that simply writes run-time values to stderr but does not actually use
that time, one cannot tell the difference between it and a real component with a
timing wrapper. This trick has several advantages:

(1) It allows the easy creation of arbitrary component run-time functions.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Dick Hamlet

(2) It speeds up run-time experiments.

(3) It eliminates fluctuations in run times caused by operating-system timing.

The first of these is the most important. The functions can be made arbitrarily
complex in a direct way, without the need to consider what a component is ‘really’
doing (or to wait for it to do it).

Closed-form formulas were used in phony components to produce interesting
behavior functions. For example, the following is the Perl code for the component
C0 whose behavior is plotted in Fig. 1:

$x = <STDIN>;

if ($x < 4) { $y = 2*$x + 1.5; }

elsif ($x < 5) { $y = 9.5; }

else { $y = -.9*($x-5)+9.5; }

$t = .1*$x + .3;

print "$y\n";

print STDERR "$t\n";

A generator was also written to create phony stateless components behaving like
a pair of given finite graphs with linear interpolation between the points. It allows
a ‘real’ component to be replaced with an efficient phony one by sampling the real
component’s properties and giving the graphs to the generator. We tested the
generator by applying it to the prime-spacing component, where we were able to
closely reproduce its behavior, including the discontinuities resulting from the Java
garbage collection.

Testing methods have traditionally been validated using a small collection of
‘toy’ programs6. The constructed components employed here might be thought
worse than ‘toys.’ However, our example components are often harder on the
theory than real ones would be: they are contrived precisely to stress it as real
components failed to do in our initial attempts. The component C0 used in the
exposition of Section 3.2.1, for example, has input-output behavior that varies
widely and non-monotonically over its domain. Although the examples of Section
3.2 are contrived to demonstrate the tools supporting our model, they were not
adjusted to exhibit the features that they do. Similar features appear in every
example in which component behaviors have substantial variation, as discussed in
Section 4.1.

3.5 Performance of Analysis and Synthesis Tools

Although little effort was expended on efficiency in the prototype tools, their per-
formance is promising.

The analysis tools for component developers necessarily use brute-force sampling,
so their running time is proportional to the number of subdomains, the number of
test samples in each, and the component execution time. We tend to discount the
inefficiency of these tools, because a component developer is doing the measurement
work once, to be used by all subsequent systems designers. The performance of CAD

6The triangle-classification program first employed by Glenford Myers [Myers 1979] is perhaps the
most used. One journal referee is reported to have stated that she would reject out of hand any
submission that employed this program in a validation study.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 17

synthesis tools is of greater interest, because their efficiency determines how long
a systems designer has to wait for predictions from a particular design and hence
how easy it is to try different designs.

A companion paper [Hamlet 2007b] analyzes the performance of the stateless
synthesis algorithms in detail, but for present purposes it is enough to note that
CAD performance depends only on the number of system constructs (roughly the
number of components in a system) and the number of subdomains in the compo-
nents being combined. On the other hand, actual system execution time depends
on the number of test inputs, the number of components, each one’s actual run
time, and the iteration counts for loops. When ‘executing’ a table-lookup system
built from the components’ catalogue entries as described in Section 3.3, the run
time for any input to any component is a small constant but the subdomain must
be looked up, requiring a time that depends on the number of subdomains. Only
one input per subdomain need be tried in the step-function approximation. These
parameters are largely distinct for the three ways of getting information about a
system, so time comparisons can be contrived to favor any of the three schemes.
But when the number of actual test inputs and actual run times are large relative to
subdomain counts, the CAD tools have a large advantage, the table-lookup system
executions are second best, and actual system execution is slowest.

On a 1.7 Ghz PC the synthesis time for the example stateless system of Section
3.2, which has 6 components, 5 synthesis steps, and 25 subdomains, is about .88 s.
The table-lookup execution time is about 2.9 s and for actual execution 23 s. Since
the components are artificial, the measured actual run time is nominal, reflecting
only the overhead of running a process. If the actual average system run time
were 100 ms and 20 samples were taken per subdomain, the system would take an
additional 50 s to test. The large disparity for small examples reflects mostly a
difference in overhead: the calculations do table manipulation while the executions
require process initiation. If the system run time or the number of system test
samples increases, the actual test time increases while the CAD-synthesis time
does not change7.

When components keep persistent state, the sampling domains increase in size
quadratically, which increases the disparity. Furthermore, executions now have to
manipulate the files that hold state values, another high-overhead operation.

4. VALIDATION EXPERIMENTS

Experimentation with software theories differs in principle from experiments to test
a scientific theory. In science there is an objective reality, sometimes called ‘nature,’
which determines the possible experiments. Nature also simplifies the experimen-
tal situation because many natural phenomena are continuous. Continuity allows
the experimenter to interpolate with confidence between relatively sparse samples.
On the contrary, software is a human creation that can be changed at will and
is intrinsically discontinuous, so that sampling its behavior (that is, testing it) is

7The argument is biased in favor of the theory because the reason for making more actual test
runs would be to improve the quality of testing. To be fair, more subdomains should then be
used in the theoretical cases. The table-lookup times increase only when there are loops that take
more iterations to complete.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Dick Hamlet

often misleading. A software theory is useful if it captures and simplifies software
properties so that they can be understood. Experimentation with a theory seeks to
observe real software behavior, and to learn if the theory exhibits the same behavior
but is easier to control and understand. Perhaps it is better to call theory a ‘model’
of real software. ‘Validation,’ checking the correspondence between model and re-
ality, is not as meaningful for software as for physics. A good model simplifies, and
thereby distorts reality, but although this necessarily makes it ‘invalid,’ its expla-
nations can be useful. We do not need to experiment with an abstraction to learn
about software—we can experiment with the thing itself. But when experiments
with real software are incomprehensible or inconclusive, it may be better to work
with a model.

In software experiments there is a unique potential for error: the experiments
themselves use software tools that can be faulty.

To be useful, an experiment comparing theory and reality must be ‘revealing.’ It
should expose how well reality is captured, but in a way that teaches us something
new about what is happening in the situation.

Experimental validation of basic software theory then has three purposes:

Check the mathematics. There can be a mistake in the mathematical model, some
important aspect of the situation improperly captured by a definition, or a proof
in error. It is an important role of experiments to expose such mistakes8.

Test the implementation of tools. For simple cases it is possible to calculate the the-
oretical results by hand, and cases of perfect approximation should produce per-
fect predictions. There is a unique opportunity for checking our tools because
the predictions of the theory can be obtained in two entirely different ways and
compared, as described at the end of Section 3.3.

Investigate the theory’s assumptions quantitatively. Any theory fails to the extent
that its assumptions do not hold. Learning how these failures manifest themselves
and how the assumptions can be quantified to control inaccuracy is essential to
improving a theory.

One way to investigate the theory is to run case studies in which subdomains cov-
ering part of the input space for a simple system are refined. In such an experiment
we hope to see the accuracy of the theoretical predictions improve and stabilize.
When the approximation is perfectly accurate, the predictions should be perfect.
Aside from the fun of finding and fixing bugs in tools, the most interesting aspect of
a case study is the insight it provides into the character of ‘bad’ subdomains. How
large and ill-chosen can subdomains be, yet the theory still make relatively accurate
predictions? What characteristics of software and its test subdomains influence the
prediction accuracy?

8The use of a ‘transfer matrix’ in our initial theory [Hamlet et al. 2001] was such a definitional
mistake. We also failed initially to understand that loop synthesis was deterministic and that
the unrolling of loops did not apply to run time and state. These mistakes were immediately
discovered by experiments.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 19

4.1 A Systematic Subdomain-refinement Experiment (Stateless Components)

A number of system structures were investigated using constructed stateless com-
ponents whose behaviors vary widely. The most complex had 12 components com-
bined in nine system constructs with a structure including common patterns like
conditionals within loops, sequences within conditionals, etc. The simplest sys-
tems had a pair of components in sequence, since the series construction is basic to
the theory. Beginning with large subdomains that make little attempt to capture
the component behaviors accurately, the subdomains were systematically refined to
observe the improvement in prediction accuracy.

A simple but typical case study uses the structure of Fig. 5, but with the differing
component behaviors listed in Table I. An input domain of [0,10) was arbitrarily
selected for the case study. Component C1 is C0 shown in Fig. 1. Figure 8 shows

Component Function y = f(x) Run time T = g(x)

C1 y =

{

2x + 1.5 x < 4
9.5 4 ≤ x < 5
−.9(x − 5) + 9.5 x ≥ 5

T = .1x + .3

C2 y = true iff 3 ≤ x < 5 T = .2
C3 y = .2(x − 6)2 + 1 T = .1
C4 y = true iff (1 ≤ x < 2) ∨ (5 ≤ x < 6) ∨ (x ≥ 8) T = .3

C5 y =

{

2 sinx + 5.2 x < 5
3 cos2 x + 4 x ≥ 5

T = .6 − .04x

C6 y = 7| cos(x2/8)|e−x/7 + x/2 T = x/12 + .1

Table I. Component behaviors in the system of Fig. 5

a measured description of another component (C6 in Table I) using the piecewise-
linear approximation with 20 subdomains. For component C6 (as for all these

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10F
un

ct
io

na
l (

up
pe

r)
 a

nd
 r

un
-t

im
e

(lo
w

er
)

va
lu

es

Input showing subdomain boundaries

Fig. 8. Measured (dotted line) and piecewise-linear approximate (solid line) behavior of component
C6

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Dick Hamlet

components) the piecewise-linear run-time approximation is perfect; Fig. 8 shows
that the piecewise-linear functional approximation to C6 is quite accurate except
in a few subdomains, e.g., just above input 6 where a cusp falls inside [6,6.5).

The example is explicit and concrete: every detail is given in Table I and Fig. 5.
The corresponding measured system behaviors are shown in Fig. 9.

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9 10F
un

ct
io

na
l (

up
pe

r)
 a

nd
 r

un
-t

im
e

(lo
w

er
)

va
lu

es

Input

Fig. 9. Measured behavior of the case-study system

Table II summarizes experiments on component behavior using the step-function
approximation as subdomains are refined. In the table, accuracy measures that

System Component
sub- measurements System predictions and measurements

domain rms % error Functional % error Runtime % error
count Function Runtime Overall Max Mean > 5 Overall Max Mean > 5

4 12.88 6.95 20.93 37.15 19.26 4 14.12 13.60 7.40 2
8 7.48 3.55 17.36 17.81 10.78 7 9.29 14.30 4.97 4

16 4.13 1.77 15.32 22.89 7.93 7 7.75 21.97 6.26 7
32 2.07 0.90 7.47 16.19 3.77 9 1.69 15.71 1.14 2
64 1.05 0.45 4.29 29.78 1.97 3 0.91 7.22 0.44 2

128 0.52 0.22 2.01 4.41 0.88 0 0.43 7.78 0.20 1
256 0.27 0.10 1.15 16.40 0.53 1 0.18 7.52 0.12 2
512 0.15 0.05 0.73 28.78 0.29 2 0.13 18.66 0.09 3

1024 0.07 0.05 0.21 3.79 0.12 0 0.03 7.19 0.03 1

KEY: “rms error” is the root-mean-square deviation of the approximation averaged across all
weighted subdomains and all components. In the groups of four columns headed “Functional
% error” and “Runtime % error”, “Overall” error is a direct comparison between prediction
and system measurement obtained by averaging equispaced samples across the input domain
without regard for subdomain boundaries; “Max” is the largest error over all subdomains; “Mean”
is the average over all subdomains; “>5” is the number of subdomains with error of more than 5%.

Table II. Prediction accuracy as subdomains are refined (step-function approximation)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 21

average over the whole domain (“Overall” and “Mean” columns) improve steadily
as the subdomains are refined, so that by the time there are 64 subdomains the
overall errors in the predicted functional values are near 4% and the run-time errors
are under 1%. The system prediction errors follow the component approximation
errors: in the lower half of the table, halving the subdomain size reduces the overall
prediction error by about half. However, the measures that look at each subdo-
main (“Max” and “> 5”) show large errors persisting and even increasing in a few
subdomains. This anomaly will be discussed below.

Using the piecewise-linear approximation gives better predictions, as displayed in
Table III. The successive lines in Tables II and III represent the same subdomains

System Component
sub- measurements System predictions and measurements

domain rms % error Functional % error Runtime % error
count Function Runtime Overall Max Mean > 5 Overall Max Mean > 5

13 3.78 0.00 10.52 9.62 4.06 5 0.04 4.04 0.32 0
26 1.42 0.00 3.28 5.94 2.06 2 0.01 0.13 0.01 0
52 0.33 0.00 1.18 7.97 0.68 2 0.00 0.05 0.01 0
96 0.12 0.00 0.44 1.66 0.13 0 0.00 0.02 0.00 0

191 0.02 0.00 0.06 0.22 0.02 0 0.00 0.01 0.00 0
384 0.00 0.00 0.01 0.04 0.01 0 0.00 0.00 0.00 0
775 0.00 0.00 0.01 0.01 0.00 0 0.00 0.00 0.00 0

Comparison between step-function and piecewise-linear approximations

128 0.52 0.22 2.01 4.41 0.88 0 0.43 7.78 0.20 1
96 0.12 0.00 0.44 1.66 0.13 0 0.00 0.02 0.00 0

Table III. Prediction accuracy as subdomains are refined (piecewise-linear approximation)

in each component approximation. The final count of system subdomains in corre-
sponding rows is larger in Table III because the piecewise-linear algorithm creates
new subdomains for each series synthesis. That these subdomains are an improve-
ment over the step-function case is illustrated by the final two rows in Table III,
which repeat the 6th and 4th rows from Tables II and III respectively. Although
its subdomains are about four times as large for the components and 30% fewer
for the system, the piecewise-linear predictions are about four times more accurate.
In terms of the effort required of a component developer, the piecewise-linear ap-
proximation is thus about 20 times better. Table III also displays the anomaly of
persistent errors in a few subdomains in the first three rows, to be discussed below.

Tables II and III show the component-measurement errors steadily decreasing
with smaller subdomains, which is a consequence of approximation theory for real-
valued functions9. The theory is validated in the case study by the corresponding
steady decrease in the system-prediction error. Furthermore, there is a nearly linear
relationship between the approximation error in the component measurements and
the prediction error, shown in Figure 10. The proportionality constant is 2.7 for
the piecewise-linear approximation, 3.7 for the step-function approximation; for the
latter, the first two rows of Table II have been omitted from the upper curve as

9Pathological cases could be constructed with everywhere discontinuous functions that would not
behave so well, but there are only eight discontinuities in the case-study components.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Dick Hamlet

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100S
ys

te
m

 o
ve

ra
ll

fu
nc

tio
na

l p
re

di
ct

io
n

er
ro

r
(%

)

Average component rms functional approximation error (%)

Fig. 10. Prediction error as a function of approximation error (upper curve: step-function; lower:
piecewise-linear)

outliers (circled points). The proportionality constant grows with the complexity
of the system being synthesized, being bounded by the number of synthesis steps,
or roughly the number of components in the system.

The information in Tables II and III can also be displayed graphically. Figure
11 shows the system predictions for the step-function approximation (128 system
subdomains); Figure 12 is for the piecewise-linear approximation (96 subdomains).
The superiority of the piecewise-linear approximation is evident.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10F
un

ct
io

na
l (

up
pe

r)
 a

nd
 r

un
-t

im
e

(lo
w

er
)

va
lu

es

Input showing subdomain boundaries

Fig. 11. Step-function-approximation predictions (solid line) and measurements (dotted line)

Figure 13 displays a small region of Fig. 11, showing a subdomain in which
inaccuracy persists—the anomalous behavior in Tables II and III. The explanation
is that predicted behavior can only change at subdomain boundaries. If there is a

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 23

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10F
un

ct
io

na
l (

up
pe

r)
 a

nd
 r

un
-t

im
e

(lo
w

er
)

va
lu

es

Input showing subdomain boundaries

Fig. 12. Piecewise-linear-approximation predictions (solid line) and measurements (dotted line)

 0

 1

 2

 3

 4

 5

 6

 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6F
un

ct
io

na
l (

up
pe

r)
 a

nd
 r

un
-t

im
e

(lo
w

er
)

va
lu

es

Input showing subdomain boundaries

Fig. 13. Detail of Fig. 11 showing subdomain error

rapid change in actual behavior (a discontinuity in the figure) within a subdomain,
the prediction cannot track it. Halving the subdomain size may only recreate the
same (or worse) relative error in a smaller subdomain. However, such errors are
confined to subdomains that occupy a smaller and smaller part of the whole domain,
so the overall error decreases.

In Fig. 13 the discontinuity near 6.7 is an emergent system property that arises
from a combination of components. Anomalous system subdomains are a residual
form of the ‘non-compositional’ nature of testing discussed in Section 2. Compo-
nent developers working in isolation can do nothing to mitigate the effect except
improve the approximation of catalogue descriptions everywhere on components’
domains. However, a component’s discontinuities themselves usually create system
discontinuities, and if the subdomain boundaries in the catalogue description are

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Dick Hamlet

placed at the points of discontinuity a corresponding system anomaly does not oc-
cur. Developers should use particular care in creating subdomains for components
that will be used as conditionals. A conditional’s discontinuities are the points at
which it switches between true and false, and a misplaced subdomain boundary
leads to a subdomain with an ‘average’ value that is neither. The tools arbitrarily
assign a binary value to such subdomains, but the prediction error that results can
be out of proportion to the subdomain size, since it will cause the wrong component
of two alternatives to be selected.

The insight that composition of subdomain-measured properties may have un-
predictable emergent consequences requires all of the context of this experiment: a
simple theory, supporting tools, and components chosen to force difficult cases to
occur.

4.2 Subdomain-refinement Experiments with State

It was not difficult to select a typical example system for the stateless case study
reported in Section 4.1—all stateless examples we tried exhibited similar features.
The theory is taxed most when component output behaviors are discontinuous
or rapidly changing, so we combined such components in a structure using all
the possible system constructors. It is more difficult to devise a representative
example with state because of the many ways local states might be used in a system.
Making most of a system’s components stateless produces the most comprehensible
examples with graphical results (e.g., Fig. 7 in Section 3.2.2); but then little of the
state theory is used.

Small case studies in which several components have state are unlikely to be
representative because of the myriad of ways state is used. So instead of a single
example, we present two that model common uses of state:

(1) Iteration to achieve convergence;

(2) Use of ‘modes’ and mode interaction.

These uses can be modeled only crudely within the restrictions imposed on compo-
nents, but the exercise holds some surprises.

Random input sequences are the correct ones (as opposed to systematic sampling)
to use in measuring component catalogue entries and in validating system predic-
tions, because infeasible states are omitted. In graphs like Fig. 3, these states don’t
appear—rectangles are missing. Unfortunately, random input sequences may fail
to exercise hard-to-reach but feasible states. It is an unsolvable problem to deter-
mine whether an omitted subdomain will never be sampled by any input sequence
or whether some untried sequence would reach it. At the component level, as a
part of verification, the tester should check that state subdomain sampling agrees
with the domain of the component’s specification10. At the system level, the same
unsolvable problem arises: In an attempted validation, some system subdomains
may not be sampled.

The reverse can also occur in validation: Some system executions can fall outside
all of the calculated subdomains. In this case the fault always lies with some

10The process may be difficult, for one thing because the specification itself may have unsuspected
infeasible states.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 25

component catalogue entry: a subdomain there was not sampled, the component
tester judged it infeasible, but was wrong, as values arising in system execution
subsequently show. When this occurs in a system-synthesis calculation the quick
fix is to redo the component sampling systematically. When there are infeasible
states, this may waste a lot of time, and it distorts the measurement of component
approximation errors (because errors in infeasible states should not count). As
discussed in Section 6.1, at system level systematic sampling doesn’t make sense,
so the only remedy for apparently missing states is more extensive random input
sequences.

4.2.1 Iteration to Convergence. A common use of state is in a loop whose body
repeats until some kind of convergence is obtained. Our example has a test com-
ponent Ct that uses its state to remember the previous value returned by a body
component Cr. Ct terminates the loop when the next iteration returns a value
close enough to the previous return. Cr uses its state to remember the term of a
geometric series which it accumulates. The system

while Ct do Cr od

thus crudely models numerical computations like Newton-Raphson iteration.
Table IV shows what happens as the component subdomains are refined by re-

peatedly splitting them in half, starting with about five subdomains in each dimen-
sion for each component. In Table IV the component measurements are systematic

R-m-s % errors
Number of system Component measurements System predictions and measurements

subdomains output run time state output run time state
total feasible ave max ave max ave max ave max ave max ave max

150 20 21.5 54 5.3 34 21.0 54 33.5 81 20.7 38 351 665
1200 59 3.2 54 0.0 0 12.6 54 31.7 162 8.8 55 179 566
9600 144 8.4 141 1.7 35 7.4 54 18.6 145 6.1 53 98.3 557

76800 338 4.2 141 0.8 35 4.2 54 11.0 138 4.5 53 55.1 505
422400 733 1.3 71 0.3 28 2.4 54 3.9 62 1.5 26 25.4 398

3328000 1203 0.7 75 0.2 28 1.3 54 2.7 64 1.2 28 13.4 411

Table IV. Measurement and prediction errors for the system while Ct do Cr od

with nine samples/subdomain; values for Ct and Cr are averaged in the ‘Component
measurements’ columns. System measurements were made with 60 random input
sequences containing 1546 points. The system state is a two-fold cross product of
local states from Ct and Cr; the error in the last state column of Table IV is the
magnitude of the vector sum of the errors in its two parts. The columns labeled
‘max’ are the error in the worst subdomain. The discrepancy between the weighted
average error over all subdomains (‘ave’ columns) and the maximum in the worst
subdomain indicates that many subdomains were badly approximated. For exam-
ple, in row 3 of Table IV, the functional prediction whose weighted average error
was 18.6% was worse than this in 39 out of 144 subdomains.

Table IV generally shows improvement in the component measurement accuracy,
leading to improved prediction accuracy. However, the improvement is much slower

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Dick Hamlet

than in the stateless case (Table II in Section 4.1), the state prediction never be-
comes very good, and there are persistent large measurement/prediction errors in
some subdomains (further discussion below). The number of system subdomains
grows by about eight times in each successive split (22 more subdomains ×2 com-
ponents), but almost all of these represent state combinations that never occur. (In
the last two data rows of the table, some infeasible state subdomains were removed
by hand to shorten the calculations.)

The component measurements in row 2 (1200 subdomains) are anomalous be-
cause there is a lucky coincidence between subdomain boundaries and the switch
between true and false by Ct. The boundaries do not usually line up, as Fig. 14
shows for the more typical measured behavior of Ct in row 3 of the table. The 38
mid-level rectangles are the subdomains in which there is a 141% error. For such
‘mixed’ cases the tools choose the closest one/zero value, zero in Fig. 14. In row

 0
 2

 4
 6

 8
 10

Input domain

 0
 2

 4
 6

 8
 10

State domain

 0

 0.2

 0.4

 0.6

 0.8

 1

Functional output

Fig. 14. Approximate (rectangles) and measured (crosses) output for loop-test component Ct

2 of Table IV mixed decisions luckily did not arise, so the functional and run-time
component measurements in row 2 are better than in other rows. The ‘mixed’ be-
havior does not disappear for smaller subdomains as explained at the end of Section
4.1.

It remains to explain the persistent large errors in some subdomains and the
overall poor prediction of system result state (last columns of Table IV). In these
experiments, as in all our case studies, we checked the correctness of the CAD
tools in each instance by comparing their prediction to the table-lookup ‘execution’
of a system formed from the catalogue entries of its components, as described in
Section 3.3. The check failed for conditionals when either branch component has
state, and in loops (as a consequence of unrolling into conditionals) when the body

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 27

component has state, as in the system of Table IV. This anomaly arises from an
inherent limitation of step-plateau approximation (and not from mistakes in the
CAD implementation as in many other cases!). In calculating the state values of
the equivalent component for a conditional, values must be supplied for local states
in the ‘other’ branch. For example, a subdomain in the equivalent may come from
the THEN branch, but part of its result-state value arises from state in the ELSE
branch. The ELSE is not involved in the composite output or run time or the part
of composite state that comes from the THEN component, but a value must be
calculated for the state part that is local to the ELSE. The correct calculation is
identity, but a true identity value is not available in the step-plateaus. The best
that can be done is to fill in some value that lies in the input state subdomain;
the CAD tools use the midpoint. This usually disagrees with the table-lookup
execution of components that is literally leaving the state of the unexecuted branch
alone, a true identity. The anomaly could be corrected as described in Section 6.1,
but in Table IV it accounts for the large state prediction error. In subsequent series
compositions, these wrong states can either disappear (when they happen to fall in
the correct subdomain after), or can cause growing errors, not only in state, but in
output and in run time, because they go to the wrong subdomain. Loop synthesis
is the worst case, because the calculated state of the body can drift badly.

It is evident that the approximation theory is not useful for predicting the re-
sults of numerical convergence: using over 3 million subdomains to get 3% average
functional accuracy instead of a half-dozen iterations of actual code is no bargain.
The implication is that such iterations should be encapsulated in a single com-
ponent, not implemented with an inter-component loop. In this case component
independent development is a false goal.

4.2.2 Modes and Mode Interaction. A case study used to study the relationship
between unit- and system testing [Hamlet 2006] can be adapted as a refinement
experiment. It uses two components with state:

Ce, an ‘editor’ component, uses its state to model two basic ideas of a text editor
like the Unix ‘visual editor’ (vi). First, an editor has two basic modes, one for
input in which most inputs are just stored, and one for commands in which most
inputs cause editing actions of varying complexity. Second, in command mode,
state is also used to tailor commands, for example to remember the last string
argument so that it need not be retyped.

Cc, a control component, is intended to act as a front-end to Ce, using its state to
remember several modes:

—Shadow of Ce’s input/control mode, so Cc knows what Ce will be doing. (It
cannot of course access the local state of independent component Ce.)

—Mode to invoke Ce, but Ce is not permitted to change its input/command
state, nor to change its tailoring parameter.

—Mode to force Ce to toggle between input/command state, split into submodes
to allow only three such changes.

—Dialog mode in which Ce is not involved.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Dick Hamlet

Stateless components Cd and Ca are also needed: Cd handles the dialog; Ca is
glue code that filters inputs to Ce to prevent it from taking actions not desired by
Cc.

[Hamlet 2006] gives complete details of the behavior of these components. Here
we display only the output behavior of Ce provided by the tools, to show how the
editor-like features are modeled. In Fig. 15, negative states (at the front) represent

 0 10 20 30 40 50 60 70 80 90 100

Input domain-1

-0.5

 0

 0.5

 1

State domain

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Functional output

Fig. 15. Output behavior of Ce modeling text-editor-like behavior

‘editor input’ mode in which neither input nor state affects the behavior; positive
states (at the back) are for ‘editor command’ mode, with complex input-dependent
output and a state-dependent aspect to the output (the linear drop-off toward state
0 in the middle of Fig. 15), which models the tailoring of commands using a state
parameter. States in [-0.5,0.5) are infeasible, modeling that not all parameter values
are allowed.

The system structure of the case study is:

if Cc then Ca; Ce else Cd fi

[Hamlet 2006] describes the expected system behavior with eight composite system
modes that are cross products of local states in Cc and Ce. Here we are only
interested in how well the behavior of a complicated system can be predicted.

Table V shows the effect of subdomain refinement, in the same format as Table
IV. Random input sequences were used for the component measurements; even with
up to 300 sequences and 45791 points a few feasible subdomains were missed for
Ce in the last two rows of Table V, which led to some system subdomains without
predicted values (4 of them in the 2nd-last row—0.3%; 57—0.2%— in the last row).

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 29

R-m-s % errors
Number of system Component measurements System predictions and measurements

subdomains output run time state output run time state
total feasible ave max ave max ave max ave max ave max ave max

4368 208 4.5 46 0.9 43 3.1 12 6.1 49 1.6 24 6.0 10

34944 415 2.8 71 0.5 52 1.8 8 3.7 74 0.9 38 2.9 5
10192 415 2.0 13 0.1 16 2.1 9 3.8 97 0.9 43 3.0 5

81536 811 1.0 8 0.1 17 1.0 6 1.6 58 0.2 23 1.5 3
652288 1512 0.4 4 .02 16 0.5 3 0.7 32 .02 2.7 0.7 1

5218304 2470 0.2 3 .01 17 0.3 2 0.3 7 .01 .2 0.3 1

Table V. Measurement and prediction errors for an editor-control-like system

System validation measurements used 120 random input sequences totalling 7217
points.

Rows 2 and 3 of Table V are bracketed together to show the effect of hand tuning
component subdomains. Row 1 was obtained with about 10 subdomains for each
component in each dimension and no attempt was made to match them to com-
ponent behavior. Row 2 has these arbitrary subdomains each split in two. Row
3 starts from row-1 subdomains, but instead of mechanical splitting, they were
adjusted by hand to reduce component measurement errors, using tool-provided
graphs like Fig. 3 and lists of errors in each subdomain. This effort was successful
as the bracketed rows show. With the hand-tuned subdomains in row 3, the pre-
diction results are about the same as in row 2, but with less than a third as many
subdomains for calculation. Rows 4-6 of Table V were obtained by successively
splitting all subdomains in half, starting with the hand-tuned ones of row 3.

In Table V the weighted average prediction error nicely tracks the reduction in
components-measurement errors, but again errors remain large in some subdomains.
This anomaly is less severe than in Table IV; for example, in row 4 of Table V,
the functional prediction average error of 1.6% has a maximum of 58%, but an
error over 5% occurs in only 36 out of 811 subdomains (4%). The explanation for
such persistent errors is thus probably the same as that for the stateless system in
Section 4.1. However, the difficulty of displaying four-dimensional graphs makes it
harder to be sure about the cause.

4.3 Summary and Critique of Refinement Case Studies

Testing of software in the ideal CBSD paradigm where components are strictly sep-
arated from systems is a way to investigate the question of unit- vs. system testing.
If CBSD tools like ours work, unit (that is, component) testing could assume a
far greater role than it has today. In the extreme case, algorithms for synthesizing
an approximate system and calculating its functional and non-functional properties
allow system testing itself to be eliminated. In this extreme there would still be sys-
tem requirements/specifications, but instead of executing assembled code against
them, the calculated predictors of system behavior would be the ‘implementation’
for verification [Hamlet 2006]. For the tools described here, the verification would
take the form of ‘executing’ by table-lookup the equivalent component that approx-
imates the complete system behavior. The advantage over executing real system
code is speed and strong tool support that is independent of programming languages

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Dick Hamlet

and operating system platforms.

Another way to phrase the unit- vs. system testing question is: Is testing really
non-compositional as is usually supposed? To what extent can everything about
assembled system properties that could be learned by testing the system, be instead
learned from only component measurements and calculations?

Some observations about the experiments presented in Section 4:

Simple case studies. The case-study systems are all small and they use artificial
components. These components and combinations were chosen to tax the capa-
bilities of the theory and tools, using experience gained from pilot experiments
(Section 3.4).

Complex behaviors. Even starting with a healthy respect for how complicated soft-
ware is, it is surprising how difficult it is to grasp intuitively the behavior of the
simplest components and systems. Explicit graphs like Fig. 6 show unexpected
behavior; when there are no graphs as in the studies of Section 4.2, it brings
home how hard it is to know much about what software is really doing.

Quality of unit testing. The r-m-s deviation of a measured approximation from the
actual behavior of a component (Section 3.1) is a precise quality measure of the
unit test from which it is taken. It validates this metric to show, as Section 4 does,
that it can be used to accurately predict system properties. In contrast, the usual
metrics of test quality are weak surrogates. There appears to be no theoretical
or sound experimental evidence validating unit-test coverage measures of test
effectiveness, for example. If indeed a good unit test must be able to serve as the
basis for system predictions, then the failure of unit-test methods in practice is
explained, because they use a very few ill-considered subdomains.

Input, output, run time, and state. A complex interdependence exists between pre-
dictions of output, run time, and state. All predictions should be dominated by
functional-output predictions, since in series composition the second component
receives its input as the first’s output. There is no such general cascade effect
involving state prediction, since component states are local. However, errors in
state prediction accumulate for the body component in a loop, making loop pre-
dictions the least accurate. As a consequence of these dependencies, it is possible
to have perfect component approximations of one property compromised by the
others. For example, the system run-time predictions in Table III are not perfect
although the component run-time measurements are perfect.

Tuning subdomains with state. It is much harder to adjust subdomains to better
capture the behavior of components with state than when they are stateless.
Partly the reason is that useful graphical presentations are much harder to give
(a consequence of the quadratic rise in descriptive data for the state case). But
interactions in behavior between input and beginning state can also make it
impossible to capture boundary behavior with rectangular subdomains, since the
boundary may be an arbitrary curve through (input×state) space. Fig. 14 is a
simple example where this curve is a diagonal line.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 31

Tool validation. Artificial case studies are only weak validation of a theory. Reality
can’t be simplified without perhaps omitting its very aspect that would kill the
theory. But the experiments of Section 4 and many others less organized provide
high confidence in the tool implementations. At each refinement step of every
experiment, a comparison was made between the calculated system and table-
lookup ‘execution’ of the approximated components in the system configuration
as described in Section 3.3. This has the effect of using the tools on a series
of more and more complex components that are each perfectly approximated
(because the approximations are being treated as if they are the components for
execution). An observed zero-error system prediction verifies that the tools are
working correctly. It will be no surprise that many mistakes in the tools were
exposed and corrected in this way.

This work was begun as an exercise in subdomain-testing theory [Hamlet et al.
2001] without any idea of implementation. So the most surprising result is that
it is possible in principle to algorithmically calculate what a system will do from
component measurements. The extreme restrictions on component interfaces are
necessary to the algorithms, but that is one accepted path to theoretical explana-
tion. The initial theory did not include state (as most testing theory does not to
this day), so it was an additional surprise that the addition of state-processing to
the tools was straightforward.

For stateless components the theory and tools work very well. The only thing
that seems to matter is rapid or discontinuous change in the functional behavior
of components. When subdomains are sized and placed to capture that behavior,
accurate predictions result. Good graphical visualization support is easy to provide
and very helpful in understanding what happens.

When there is state, no simple summary is possible. The use of state to im-
plement a handful of ‘modes’ is really just a way of packaging a handful of state-
less behaviors in one. Once the state subdomains accurately isolate each mode,
predictions are accurate if the input subdomains handle discontinuities as above.
On the other hand, interactions between input- and state functions may never be
captured adequately. The more components have state, the harder it is to under-
stand the cross-product system state behavior and the more poorly the approxima-
tion and synthesis algorithms perform. In particular, state combinations where a
conditional-test component has state and so does a component it controls may not
be well captured by the synthesis approximations.

When the theory fails to give accurate predictions, there are two interpretations:
The first, obvious one is that theory is useless and sensible people should ignore it
(this theory, anyway). But a second interpretation is that this theory describes how
well unit-test quality translates to system quality. So when a particular case fails,
that case is one in which unit testing is not valuable. Extending this insight, those
units themselves may not be of value—it would be better to combine the offending
combination into a single component. The tradeoff is between how difficult it is
to test single components well (when too many have been coalesced) and how
meaningless good component tests are (when there is too much separation).

The most interesting observation to arise from the experiments of Section 4 is the
existence of emergent system test properties such as prediction errors that persist

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Dick Hamlet

in some subdomains (Section 4.1, Fig. 13). These seem to be the non-composable
nature of testing re-appearing at the subdomain level when subdomains banish it at
the domain level. In the ideal CBSD process there is nothing a component designer
can do about failures of the theory that only emerge for particular system designs,
except perhaps test to a far higher standard than seems needed or wise. In the
experiments of Section 4 we strictly adhered to the ideal: we used measurements
of system properties only for validation, never to adjust component measurements.
For example, an emergent system discontinuity could have been traced back to the
component combination that created it, and the subdomains of those components
adjusted to create better system subdomains near the discontinuity. But in practice,
a system designer might make the best of both worlds by breaking slightly with the
ideal. A few rough actual system tests will indicate how good the CAD predictions
are. If they are accurate, design can proceed using them. If they are poor, the
problem can be traced to an offending component combination (as in Section 5.2
to follow) and those components can be replaced with better ones. Or, components
can be sent back to their developers for further directed testing peculiar to emergent
properties of this particular system.

5. USING COMPONENT CATALOGUE ENTRIES AND CAD PREDICTIONS

When a system designer decides to use a certain collection of components in a par-
ticular design, working with ideal CBSD tools is the same as working with code
except that: (1) The tools can be much faster and easier to use than code execu-
tions, and (2) Everything is only an approximation to actual behavior. Insofar as
the designer would like to learn anything using testing methods, it can be done
approximately without resorting to code. The ideal CBSD paradigm protects pro-
prietary information about components, since not even their binary forms are made
public.

5.1 Functional vs. Non-functional Predictions

System testing requires an oracle, usually a human being reading a system specifi-
cation, to judge the success or failure of test executions. In some cases, the approx-
imate CAD-synthesized tables can be usefully compared to an oracle’s judgement.
It is possible to get a good sense of the general shape of a piecewise continuous
function by looking at graphs such as Figs. 6 and 7. However, except for scien-
tific applications in which numerical results have specified error bounds, the CAD-
calculated functional values are likely to always be judged failures, even though
they are (say) within 1% of what actual code correctly does. However, even rough
functional approximation suffices for the prediction of non-functional properties
like run time. Non-functional specifications are often less precise than functional
ones. For example, run time may be required to be within a given response time,
or reliability to exceed a given value. If there is some leeway in such specifications,
it may be enough to absorb the calculation errors in the CAD tools, and permit a
valid prediction that a non-functional requirement has or has not been met by a
design using particular components.

For example, in Fig. 11, suppose that the response time is required to be less
than 3. Then knowing the catalogue-entry error of .22% (Table II, row 6), and
that in a six-component system the CAD calculation might stretch that error by

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 33

about 5 times (Fig. 10), the predicted run-time values might be wrong by about
1%. From the graph, the largest predicted run time is about 2, so a prediction
that the designed system will meet its response-time requirement seems safe, since
2 ± .02 < 3. Even in the much poorer results for systems with state, the run-time
predictions are not bad: at around 10000 subdomains where the calculations are
almost instantaneous, the run-time error is about 6% in Table IV and under 1% in
Table V.

5.2 Interface Between Components

The tools that execute a composite system for comparison with the theory’s pre-
dictions include a trace facility by subdomain. Each input given to the system is
monitored to see which (if any) subdomains it reaches in each of the components
that comprise the system. The trace data allows the system developer to study
what happens at the internal system interfaces.

A more detailed variation of the ‘composability’ problem for testing theory men-
tioned in Section 2 is profile distortion between components. The operational profile
of input data presented to a system is seen by the first component, but as informa-
tion passes among the components the profile is distorted. Adequate testing of a
component buried in the system structure should take account of this profile it sees
in place, but of course the in situ profile cannot be known until the system design
is complete and all components are in place. Unfortunately, profile distortion in
a system is substantial even in the simplest cases. For example, if the system of
Fig. 5 described in Section 3.2.1 is given inputs from a uniform profile (density
0.04 over each of 25 subdomains), the profile seen by C6 (the component in the
false branch of the conditional in Fig. 5) is shown in Fig. 16. There is no way that
the component developer can know that this would be the appropriate test profile;

 0

 0.05

 0.1

 0.15

 0.2

 0.25

R
el

at
iv

e
fr

eq
ue

nc
y

[0
.0

, 0
.2

5)

[0
.2

5,
 0

.5
)

[0
.5

, 0
.7

5)

[0
.7

5,
 1

.0
)

[1
.0

, 1
.2

5)

[1
.2

5,
 1

.5
)

[1
.5

, 1
.7

5)

[1
.7

5,
 2

.0
)

[2
.0

, 2
.2

5)

[2
.2

5,
 2

.5
)

[2
.5

, 2
.7

5)

[2
.7

5,
 3

.0
)

[3
.0

, 3
.2

5)

[3
.2

5,
 3

.5
)

[3
.5

, 3
.7

5)

[3
.7

5,
 4

.0
)

[4
.0

, 5
.0

)

[5
.0

, 5
.6

3)

[5
.6

3,
 6

.2
5)

[6
.2

5,
 6

.8
8)

[6
.8

8,
 7

.5
)

[7
.5

, 8
.1

3)

[8
.1

3,
 8

.7
5)

[8
.7

5,
 9

.3
8)

[9
.3

8,
 1

0.
0)

Input subdomains

system input profile

Fig. 16. Profile seen by component C6 on uniformly distributed input to system of Fig. 5

using a uniform test profile for C6 would be badly wrong. For example, the density
seen by C6 in [8.75, 9.38) is about 0.25, not the uniform 0.04. Profile distortion is

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · Dick Hamlet

an elementary consequence of using components in series, but concrete examples
such as this one bring it home.

It is subdomain testing that solves the problem of how to test a component with-
out knowing its eventual use. No matter how the in situ profile weights inputs, they
have been sampled. The payment for this generality is effort wasted in particular
cases: For example, in Fig. 16 all the component tests in subdomains [0, 0.25) –
[1.5, 1.75) and [2.0, 2.25) – [5.0, 5.63) are wasted for the trial system. The finer the
subdomain division, the better an arbitrary profile can be handled, but the more
effort may be wasted.

An extreme version of profile distortion occurs when one component’s output
goes outside the catalogue-entry input domain for a following component. When
this happens in executing a real system, there is usually a catastrophic system
failure. The Ariane-5 flight-control software failed [Lions 1996], for example, when
a component sent a symbolic error code as output to a routine expecting a short
integer. The CAD tools, by calculating for all system-input subdomains, must
necessarily detect any such problem, and the trace data allows the system designer
to study the failure before system construction. There is a difficulty, however, in
presenting the failure information to the CAD tool user. In a sequence composition
of two components CA and CB, the CAD tool issues messages like:

Output 103.6 from CA subdomain [3,7) does not fall in any

CB subdomain.

The system designer can then examine the situation to discover whether CA is
producing the wrong value on [3, 7), whether CB should have been able to handle
103.6, or whether the design itself is wrong, e.g., CA should not be in series with
CB.

But suppose that such a difficulty arose11 in the example system of Fig. 5, with
the message

Output 9.5 from E2 subdomain [1.25,1.5) does not fall in any

E3 subdomain.

The message arises in the last step of the synthesis of Fig. 5 when the subsys-
tem consisting of components C1, C2, and C3 (equivalent component E2) is being
composed in series with the subsystem of components C4, C5, and C6 (equivalent
component E3). The diagram of Fig. 17 presents the situation.

−→

[1.25, 1.5)
E2

[0, 10)

9.5
−→

??
E3

[0, 9.375)

Fig. 17. Mismatch of two equivalent components in the synthesis of Fig. 5

The trace facility allows the tools to trace back to the original components that
form the system by expanding the equivalent-component boxes. At the next level,
expanding E2 and E3, we have Fig. 18. In Fig. 18 the designer can see that the

11To create the example, the subdomain [9.375, 10.0) was removed from the configuration file for
component C6 in Fig. 5.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 35

−→

[1.25, 1.5)
C1

[0, 10)

4.2
−→

[4, 4.5)
E1

[0, 10)

9.5
−→

[9.375, 10.0)
C4

[0, 10)

9.5
−→

??
C6

[0, 9.375)

Fig. 18. Lifting of Fig. 17 by one equivalent-component level

mismatch is inside E3 at the input to component C6.
The domain analysis of the example can be performed entirely by CAD tools,

using no actual system executions12. It demonstrates the detection of a system
design problem (mismatched component interfaces) “on paper.”

5.3 A Reliability Application

When components are placed in series, their run times add (with the proviso that in
the second component the run-time function sees an input that comes from the first
component). For the non-functional property of reliability, the component failure
rates should be measured, and the failure-rate complements (reliabilities) multiply
where run times add. Taking the usual assumption that failure rate is constant in
each subdomain [Musa et al. 1990], a stateless component’s reliability description
is a step function. The theory and tools described above can be used to measure
component reliability and to predict system reliability.

However, the underlying reliability theory has an important deficiency. The low
failure rates of high-quality software cannot be directly observed: in a practical
amount of test time, reasonably good software does not fail. The best that can
measured is an upper bound on failure rate and an upper confidence bound for the
measurement [Hamlet 1994]. The component-synthesis tools therefore calculate
only bounds on system reliability from bounds obtained by executing the compo-
nents that make up the system, none of which is actually observed to fail. The
theoretical predictions therefore really cannot be validated—all we have is predic-
tion of a bound and experimental data that the bound is not violated, a much
weaker result than the quantitative run-time validation experiments of Section 4.
It was this difficulty that led to the use of run time for most of our studies. However,
decomposition into subdomains exhibits some interesting reliability features.

Consider again the case-study system of six components used in Section 4.1.
Table II was obtained with only a few samples per subdomain—enough to get
fairly accurate functional- and run-time predictions. But with a low sampling
frequency the reliability bounds are poor. Increasing the sampling to 300 random
samples/subdomain in all components except 500 samples/subdomain in C5 and
700 in C6 improves the 90% upper-confidence-bound reliability to better than 0.9
(failure rates below 0.1) in all components. For the system of Fig. 5, the lower
curve in Fig. 19 shows the predicted reliability for the system using 32 subdomains
(the 4th line in Table II). The calculations are the same as those for the run-
time curve in Fig. 11, but multiplying the step-function component failure rates
instead of adding component run times. The lower curve in Fig. 19 predicts the

12As the trace facility is currently implemented, it does monitor executions, because the student
who implemented it was not able to conceive of a ‘static trace’ as part of the CAD calculation.
However, as explained in Section 3.3 these executions can be table lookups in catalogue entries,
not actual component code.

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 · Dick Hamlet

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0 2 4 6 8 10

S
ys

te
m

 r
el

ia
bi

lit
y

bo
un

d

Input showing subdomain boundaries

Fig. 19. Reliability predictions for the case-study system (upper curve: additional testing of C2)

poorest system reliability in the interval [.75, 1.75). Guessing that this involves
the loop construction, the test sampling of component C2 was increased to 8000
samples/subdomain13, raising its reliability bound from about 0.94 to 0.99. The
upper curve in Fig. 19 shows the system improvement.

The scenario described in this section, predicting the reliability of a system design
using catalogue-entry values for its components, then making component adjust-
ments to improve the result, is an example of design by trial. The system designer
might request that the developers of component C2 test it more thoroughly, or
might substitute another component whose catalogue reliability is better.

6. EXTENSIONS AND FUTURE WORK

Research-prototype tools are easy to extend and always in need of improvement.
The present collection is coded in very pedestrian Perl; much of the work was done
by high school students working under a summer mentoring program. Perl was
chosen to make the learning curve shallow for short-term projects, which has been
very successful but created tools that could use documentation and clean up. The
current versions of all tools are available on-line [Hamlet 2007a], along with tutorial
examples and many of the components used in this paper.

6.1 Issues for Tools that Handle State

The present tools that create catalogue entries for components with state can sample
in two ways: Systematically in the two-dimensional (input×state) subdomains, or
using random sequences of inputs. The former may record infeasible states as
possible, but the latter can incorrectly miss a feasible state because not enough
sequences were tried. A missed state can show up in system-synthesis calculations
as an interface mismatch as described in Section 5.2. If there are only a few such

13Using the trace facility described in Section 5.2, the low reliability can be tracked to eight
subdomains of C2, but an overall improvement results from retesting its whole domain.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 37

omissions, it would be reasonable to simply ignore them in synthesis, rather than
force the component designer to use systematic sampling. A compromise would
be to mix the two by adding a few explicit subdomains to those that arise in
random sequences. At the system level the tools try only random sequences of
inputs because it seems unlikely that many of a huge collection of cross-product
states will be feasible. (For example, in the last line of Table IV, only about 0.05%
of the subdomains are feasible.) Further exploration of systematic sampling at the
system level is called for.

In the initial CAD implementation including state, it was decided that only
the step-function approximation would be implemented. This decision came from
bad experience with the numerical stability of subdomain-splitting in the stateless
piecewise-linear approximation CAD algorithms, despite their significantly better
accuracy. It was not anticipated that this would in principle compromise the cor-
rectness of an equivalent component computed for a conditional (and hence also
for a loop), as described at the end of Section 4.2.1. To fix that error, linear ap-
proximations could be implemented over both input- and state subdomains. The
former follows what has already been done for the stateless case, but the latter
is problematic: state values are often discrete and fitting linear functions seems
inappropriate.

There is another subtle difficulty that would be resolved by implementing lin-
ear approximation in the input dimension for components with state. In a series
composition whose first component is approximated by an input step function, the
resulting equivalent component can have no subdomains but those of that first
component. When the second component has complex behavior that can be cap-
tured only by careful choice of subdomains, yet the first component needs only a
few, then although it looks to the components’ developers like they have both done
an adequate job, the synthesis calculation will be inaccurate: the second compo-
nent subdomain detail will be washed out by the first component’s simplicity. This
happened with Ca; Ce in the system of Section 4.2.2. The effect doesn’t show dra-
matically in our validation experiments, because all subdomains are being refined
together. It does explain why in Table V the maximum predicted output errors
remain high despite excellent approximations in all components.

Discrete state values are often thought of as ‘modes’ of a component or system,
selecting a tailored behavior based on history rather than requiring input parame-
ters to set the ‘mode’ on each execution. For this view it would be more appropriate
to take the simplest state values to be integers rather than floating-point values,
and a more natural model might allow multiple state values rather than require the
state to be coded into a single value.

6.2 Application to ‘Real’ Software

The experimental exploration in this paper utilizes artificial components and sys-
tems chosen to stress the subdomain theory and provide fundamental insight into
algorithms for system-synthesis prediction. The tools are general so long as the re-
strictions to single floating-point input/output/state values are observed. Although
mathematical software sometimes does observe these restrictions, we do not believe
that using it for ‘real’ examples will be informative. Real mathematical programs
use sophisticated algorithms and extensive computations to get accurate results

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 · Dick Hamlet

efficiently, but when viewed by the results alone, our components in Section 4 put
more stress on the synthesis algorithms and reveal more about where they succeed
or fail.

To experiment with more interesting components means lifting the restrictions
to single numerical values. Using coding techniques from recursive function theory
can turn a tuple of inputs into a single value, but allowing tuples directly only
complicates the bookkeeping in tools, so that would be a first step. More important
is to allow non-numeric types, notably ‘string.’ This raises hard questions about
how to sample and approximate wider types, questions that testing theory has
not addressed. For strings, one idea is to categorize strings by relevant properties
(which might be derived from a specification) and to collect string inputs into
subdomains using tuples of properties. For example, if string length, presence
of upper case, and number of distinct member characters were three properties,
consider the subdomain S1 = [5,9) × {1} × [1,6), that is, strings of length 5-8
containing some upper case and fewer than 6 distinct characters:

Strings in S1 Strings not in S1

xxxXx xxxxx

ABCDEE ABCDEFGH

12244Z55 A1233333333

Whether such subdomains are useful of course depends crucially on the property
selection.

6.3 Concurrency

Many, perhaps most, component-based designs make essential use of concurrent ex-
ecution. Often the parallel execution involves far-flung processors communicating
over a network. The practical applications of these systems are of utmost impor-
tance, and a number of important issues such as multi-version programming (MVP)
can only be discussed in a concurrent setting. The primary deficiency of the theory
presented in Section 2 is that it makes no attempt to capture concurrency. Part
of the reason for this omission is our goal of a simple theory—testing of concur-
rent systems is evidently not the place to start. But more important, it is hard
to imagine a concurrent theory that is ‘functional’ in character, as the underlying
Goodenough and Gerhart basis is. It may well be that extending testing theory is
not a useful way to study concurrency. For testing itself, excellent tools have been
devised to execute and monitor concurrent components, notable those of Kramer
and Magee [Kramer and Magee 2006].

7. RELATED WORK

To the best of my knowledge, the work presented in this paper is new: Foundational
issues in software testing theory are investigated using tool-driven experiments, in
the context of software components and their composition. The testing theory that
originated with Goodenough and Gerhart [Goodenough and Gerhart 1975] and the
subdomain approach of Howden [Howden 1976] have previously not been applied
to this context, nor have tools been implemented to experiment with testing theory
in any context.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Tools and Experiments Supporting a Testing-based Theory of Component Composition · 39

Other promising theoretical treatments of components use the pre- and post-
condition formalism now called “design by contract” [Meyer 2000], model checking
[Xie and Browne 2006], or bounded exhaustive testing [Dennis et al. 2006]. But
these treatments do not apply to testing and they are less amenable to experiments.
Perhaps the work closest to ours uses the Daikon tool [Ernst et al. 2001] that
approximates programs using test data to induce assertions. However, Daikon uses
testing as a device to investigate logic-based specifications rather than to look at
testing itself; Daikon has not been applied to components and their composition.
Meinke [Meinke 2004] has used approximation very like ours (and with the same
restriction to numerical data) for seeking failures in stand-alone stateless programs.

8. SUMMARY AND CONCLUSIONS

We implemented tools to experiment with a fundamental, testing-based theory of
software component composition. The theory approximates the behavior of com-
ponents using subdomain testing, then uses these approximations to calculate ap-
proximate properties of systems built from the components; the tools measure the
approximations, then make and validate system predictions.

We experimented with the tools using artificial components whose behavior could
be easily adjusted to tax the capabilities of the synthesis algorithms. Theoretical
predictions could often be made accurate by refining the test subdomains for their
components. Good system predictions using stateless components turns on the
discontinuities and rapid variation in those components’ functional behavior. These
cause persistent prediction errors in some system subdomains, but as subdomains
are refined the error subdomains contribute less and less. When components have
local state, predictions are less good. An explosion in cross-product subdomains
makes it difficult to understand why behavior is not being captured and it is too
expensive to carry subdomain refinement very far.

Unit (component) testing is surprisingly good for obtaining system predictions
without system tests. But to be trustworthy the unit tests must be painstakingly
done. Today’s practice falls far short of the necessary standard.

Acknowledgements

Zheng Tu, Milan Andric, Ben Buford, John Christmann, Alex Corrado, Paul
Draghicescu, Michael Plump, and Devon Gleeson worked on the prototype tools
and early versions of the experiments.

REFERENCES

Boehm, C. and Jacopini, G. 1966. Flow diagrams, Turing machines, and languages with only
two formation rules. Comm. of the ACM 9, 366–371.

Dennis, G., Chang, F.-H., and Jackson, D. 2006. Modular verification of code with SAT. In
Proceedings ISSTA 2006. Portland, ME, 109–119.

Ernst, M., Cockrell, J., Griswold, W. G., and Notkin, D. 2001. Dynamically discovering
likely program invariants to support program evolution. IEEE Trans. on Soft. Eng. 27, 99–123.

Floyd, R. W. 1967. Assigning meanings to programs. In Proceedings Symposium Applied Math-

ematics. Vol. 19. Amer. Math. Soc, 19–32.

Goodenough, J. B. and Gerhart, S. L. 1975. Toward a theory of test data selection. IEEE

Trans. on Soft. Eng. 1, 156–173.

ACM Journal Name, Vol. V, No. N, Month 20YY.

40 · Dick Hamlet

Hamlet, D. 1994. Random testing. In Encyclopedia of Software Engineering, J. Marciniak, Ed.

Wiley, New York, 970–978.

Hamlet, D. 2006. Subdomain testing of units and systems with state. In Proceedings ISSTA

2006. Portland, ME, 85–96.

Hamlet, D. 2007a. www.cs.pdx.edu/∼hamlet/components.html.

Hamlet, D. 2007b. Software component composition: subdomain-based testing-theory founda-
tion. J. Software Testing, Verification and Reliability 17, 243–269.

Hamlet, D., Andric, M., and Tu, Z. 2003. Experiments with composing component properties.
In Proc. 6th ICSE Workshop on Component-based Software Engineering, K. Wallnau, Ed.
Portland, OR. http://www.sei.cmu.edu/pacc.

Hamlet, D., Mason, D., and Woit, D. 2001. Theory of software reliability based on components.
In Proceedings ICSE ‘01. Toronto, Canada, 361–370.

Howden, W. E. 1976. Reliability of the path analysis testing strategy. IEEE Trans. on

Soft. Eng. 2, 208–215.

Kramer, J. and Magee, J. 2006. Concurrency: State Models & Java Programs, 2nd ed. Wiley,
New York.

Lions, J. L. 1996. ARIANE 5 Flight 501 Failure Report by the Inquiry Board. European Space
Agency (ESA), Paris.

Meinke, K. 2004. Automated black-box testing of functional correctness using function approx-
imation. In Proceedings ISSTA ’04. Boston, 143–153.

Meyer, B. 2000. Object-oriented Software Construction. Prentice Hall.

Mills, H., Basili, V., Gannon, J., and Hamlet, D. 1987. Principles of Computer Programming:

A Mathematical Approach. Allyn and Bacon.

Musa, J., Iannino, A., and Okumoto, K. 1990. Software Reliability. McGraw-Hill, New York.

Myers, G. J. 1979. The Art of Software Testing. Wiley-Interscience, New York, NY.

Xie, F. and Browne, J. 2006. Verification of component-based software application families.
I. Gorton, G. T. Heineman, I. Crnkovic, H. W. Schmidt, J. A. Stafford, C. Szyperski, and
K. Wallnau, Eds. LNCS 4063. Springer, 50–66.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, Month 20YY.

